
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 13. Formulating Dynamic Programming Recursions

1 Formulating DP recursions

● Last lesson: recursions for shortest path problems

● Dynamic programs are not usually given as shortest/longest path problems

○ However, it is usually easier to think about DPs this way

● Instead, the standard way to describe a dynamic program is a recursion

● Let’s revisit the knapsack problem that we studied back in Lesson 7 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 11
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your the�?

● We formulated the following dynamic program for this problem by giving the following longest path representa-
tion:

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

end
stage 1

take gold?
stage 2

take silver?
stage 3

take platinum?
stage 4
end

end

0

0

0

0

0

0

0

0

0
11

11
11

11
11

11

0

0

0

0

0

0

0

0

0

7

7

7

7

7

7

7

0

0

0

0

0

0

0

0

0

12
12

12
12

12

0
0

0

0

0

0

0

0
0

source

sink

● Let’s formulate this as a dynamic program, but now by giving its recursion representation

1

● Let
wt = weight of metal t vt = value of metal t for t = 1, 2, 3

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Reward of decision xt at stage t and state n:

● Reward-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired reward-to-go function value:

2

● In general, to formulate a DP with its recursive representation:

Dynamic program – recursive representation

● Stages t = 1, 2, . . . , T and states n = 0, 1, 2, . . . ,N

● Allowable decisions xt at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

● Cost/reward of decision xt at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Cost/reward-to-go function ft(n) at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Boundary conditions on fT(n) at state n (n = 0, 1, . . . ,N)

● Recursion on ft(n) at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

ft(n) = min or max
xt allowable

⎧⎪⎪
⎨
⎪⎪⎩

(
cost/reward of
decision xt

) + ft+1(
new state
resulting
from xt

)

⎫⎪⎪
⎬
⎪⎪⎭

● Desired cost-to-go function value

● How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path Recursive

node tn ↔ state n at stage t
edge (tn , (t + 1)m) ↔ allowable decision xt in state n at stage t that results in

being in state m at stage t + 1

length of edge (tn , (t + 1)m) ↔ cost/reward of decision xt in state n at stage t that results
in being in state m at stage t + 1

length of shortest/longest path from
node tn to end node

↔ cost/reward-to-go function ft(n)

length of edges (Tn , end) ↔ boundary conditions fT(n)
shortest or longest path ↔ recursion is min or max:

ft(n) = min or max
x t allowable

⎧⎪⎪
⎨
⎪⎪⎩

(
cost/reward of
decision xt

)+ ft+1(
new state
resulting
from xt

)

⎫⎪⎪
⎬
⎪⎪⎭

source node 1n ↔ desired cost-to-go function value f1(n)

3

2 Solving DP recursions

● To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

● We solve the DP backwards:

○ start with the boundary conditions in stage T
○ compute values of the cost-to-go function ft(n) in stages T − 1, T − 2, . . . , 3, 2

○ . . .until we reach the desired cost-to-go function value

● Stage 4 computations – boundary conditions:

● Stage 3 computations:

f3(8) =

f3(7) =

f3(6) =

f3(5) =

f3(4) =

f3(3) =

f3(2) =

f3(1) =

f3(0) =

● Stage 2 computations:

f2(8) =

f2(7) =

f2(6) =

f2(5) =

4

f2(4) =

f2(3) =

f2(2) =

f2(1) =

f2(0) =

● Stage 1 computations – desired cost-to-go function:

● Maximum value of the�:

● Metals to take to achieve this maximum value:

5

Example 2. _e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. _e
company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company
produces the beer requires a factory setup cost of $5,000. Each batch of beer costs $2,000 to produce. Batches can be
held in inventory at a cost of $1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to at most 3 batches. _e company has no initial inventory.

_e company wants to ûnd a production plan that will meet all demands on time and minimizes its total production
and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive
representation. Solve the dynamic program.

Formulating the DP

● Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path
representation:

○ Stage t represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
○ Node tn represents having n batches in inventory at stage t (n = 0, 1, 2, 3).

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

end

Stage 1 Stage 2 Stage 3 Stage 4

0

0

0

0

source sink

Month Production amount Edge Edge length

1 0 (1n , 2n−1) for n = 1, 2, 3 1(n − 1)
1 1 (1n , 2n) for n = 0, 1, 2, 3, 4 5 + 2(1) + 1(n)
1 2 (1n , 2n+1) for n = 0, 1, 2 5 + 2(2) + 1(n + 1)
1 3 (1n , 2n+2) for n = 0, 1 5 + 2(3) + 1(n + 2)

2 0 (2n , 3n−2) for n = 2, 3 1(n − 2)
2 1 (2n , 3n−1) for n = 1, 2, 3 5 + 2(1) + 1(n − 1)
2 2 (2n , 3n) for n = 0, 1, 2, 3 5 + 2(2) + 1(n)
2 3 (2n , 3n+1) for n = 0, 1, 2 5 + 2(3) + 1(n + 1)

3 0 not possible
3 1 (3n , 4n−3) for n = 3 5 + 2(1) + 1(n − 3)
3 2 (3n , 4n−2) for n = 2, 3 5 + 2(2) + 1(n − 2)
3 3 (3n , 4n−1) for n = 1, 2, 3 5 + 2(3) + 1(n − 1)

6

● Let dt = number of batches required in month t, for t = 1, 2, 3

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Reward of decision xt at stage t and state n:

● Reward-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired reward-to-go function value:

7

Solving the DP

● Stage 4 computations – boundary conditions:

● Stage 3 computations:

f3(3) =

f3(2) =

f3(1) =

f3(0) =

● Stage 2 computations:

f2(3) =

f2(2) =

f2(1) =

f2(0) =

● Stage 1 computations – desired cost-to-go function:

● Minimum total production and holding cost:

● Production amounts that achieve this minimum value:

8

