Lesson 13. Formulating Dynamic Programming Recursions

1 Formulating DP recursions

- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
- However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion
- Let's revisit the knapsack problem that we studied back in Lesson 7 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8 kg . If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

- We formulated the following dynamic program for this problem by giving the following longest path representation:

- Let's formulate this as a dynamic program, but now by giving its recursion representation
- Let

$$
w_{t}=\text { weight of metal } t \quad v_{t}=\text { value of metal } t \quad \text { for } t=1,2,3
$$

- Stages:

亚

- States:
- Allowable decisions x_{t} at stage t and state n :
- Reward of decision x_{t} at stage t and state n :
- Reward-to go function $f_{t}(n)$ at stage t and state n :
- Boundary conditions:
- Recursion:
- Desired reward-to-go function value:
- In general, to formulate a DP with its recursive representation:

Dynamic program - recursive representation

- Stages $t=1,2, \ldots, T$ and states $n=0,1,2, \ldots, N$
- Allowable decisions x_{t} at stage t and state n
$(t=1, \ldots, T-1 ; n=0,1, \ldots, N)$
- Cost/reward of decision x_{t} at stage t and state n
$(t=1, \ldots, T ; n=0,1, \ldots, N)$
- Cost/reward-to-go function $f_{t}(n)$ at stage t and state $n \quad(t=1, \ldots, T ; n=0,1, \ldots, N)$
- Boundary conditions on $f_{T}(n)$ at state n
$(n=0,1, \ldots, N)$
- Recursion on $f_{t}(n)$ at stage t and state n

$$
(t=1, \ldots, T-1 ; n=0,1, \ldots, N)
$$

$$
f_{t}(n)=\min _{x_{t} \text { allowable }}\left\{\binom{\text { cost/reward of }}{\text { decision } x_{t}}+f_{t+1}\left(\begin{array}{c}
\text { new state } \\
\text { resulting } \\
\text { from } x_{t}
\end{array}\right)\right\}
$$

- Desired cost-to-go function value
- How does the recursive representation relate to the shortest/longest path representation?
$\left.\begin{array}{lll}\hline \text { Shortest/longest path } & & \text { Recursive } \\ \hline \begin{array}{l}\text { node } t_{n} \\ \text { edge }\left(t_{n},(t+1)_{m}\right)\end{array} & \leftrightarrow & \text { state } n \text { at stage } t \\ \text { length of edge }\left(t_{n},(t+1)_{m}\right)\end{array} \quad \leftrightarrow \begin{array}{c}\text { allowable decision } x_{t} \text { in state } n \text { at stage } t \text { that results in } \\ \text { being in state } m \text { at stage } t+1\end{array}\right)$

2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
- start with the boundary conditions in stage T
- compute values of the cost-to-go function $f_{t}(n)$ in stages $T-1, T-2, \ldots, 3,2$
- ... until we reach the desired cost-to-go function value
- Stage 4 computations - boundary conditions:
\square
- Stage 3 computations:
$f_{3}(8)=\square$
$f_{3}(7)=\square$
$f_{3}(6)=\square$
$f_{3}(5)=\square$
$f_{3}(4)=\square$
$f_{3}(3)=\square$
$f_{3}(2)=\square$
$f_{3}(1)=\square$
$f_{3}(0)=\square$
- Stage 2 computations:
$f_{2}(8)=\square$
$f_{2}(7)=\square$
$f_{2}(6)=\square$
$f_{2}(5)=\square$
\square
$f_{2}(4)=$
$f_{2}(3)=$
$f_{2}(2)=$
$f_{2}(1)=$
$f_{2}(0)=$
- Stage 1 computations - desired cost-to-go function:

- Maximum value of theft:
- Metals to take to achieve this maximum value:

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of $\$ 5,000$. Each batch of beer costs $\$ 2,000$ to produce. Batches can be held in inventory at a cost of $\$ 1,000$ per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Formulating the DP

- Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path representation:
- Stage t represents the beginning of month $t(t=1,2,3)$ or the end of the decision-making process $(t=4)$.
- Node t_{n} represents having n batches in inventory at stage $t(n=0,1,2,3)$.

- Let $d_{t}=$ number of batches required in month t, for $t=1,2,3$
- Stages:
\square
- States:
\square
- Allowable decisions x_{t} at stage t and state n :
- Reward of decision x_{t} at stage t and state n :

- Reward-to go function $f_{t}(n)$ at stage t and state n :
- Boundary conditions:
- Recursion:
\square
- Desired reward-to-go function value:

Solving the DP

- Stage 4 computations - boundary conditions:
\qquad
- Stage 3 computations:
$f_{3}(3)=\square$
$f_{3}(2)=\square$
$f_{3}(1)=\square$
$f_{3}(0)=\square$
- Stage 2 computations:
$f_{2}(3)=\square$
$f_{2}(2)=\square \square$
$f_{2}(1)=\square$
$f_{2}(0)=\square$
- Stage 1 computations - desired cost-to-go function:
\square
- Minimum total production and holding cost:
- Production amounts that achieve this minimum value:

