Lesson 13. Formulating Dynamic Programming Recursions

1 Formulating DP recursions

- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
 - However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion
- Let's revisit the knapsack problem that we studied back in Lesson 7 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

• We formulated the following dynamic program for this problem by giving the following longest path representation:

• Let's formulate this as a dynamic program, but now by giving its recursion representation

• Let w_t = weight of metal t

• Stages:

• States:

• Allowable decisions *x*_t at stage *t* and state *n*:

- Reward of decision *x*_t at stage *t* and state *n*:
- Reward-to go function $f_t(n)$ at stage *t* and state *n*:
- Boundary conditions:
- Recursion:

• Desired reward-to-go function value:

• In general, to formulate a DP with its recursive representation:

Dynamic program – recursive representation

- **Stages** *t* = 1, 2, ..., *T* and **states** *n* = 0, 1, 2, ..., *N*
- Allowable **decisions** x_t at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)
- **Cost/reward** of decision *x*_t at stage *t* and state *n*
- **Cost/reward-to-go** function $f_t(n)$ at stage *t* and state *n* (t = 1, ..., T; n = 0, 1, ..., N)
- **Boundary conditions** on $f_T(n)$ at state n
- **Recursion** on $f_t(n)$ at stage *t* and state *n*

$$(n = 0, 1, ..., N)$$

 $(t = 1, ..., T - 1; n = 0, 1, ..., N)$

 $(t = 1, \ldots, T; n = 0, 1, \ldots, N)$

$$f_t(n) = \min_{x_t \text{ allowable}} \operatorname{cost/reward of}_{decision x_t} + f_{t+1} \left(\begin{array}{c} \operatorname{new state}_{resulting} \\ \operatorname{from } x_t \end{array} \right) \right\}$$

• Desired cost-to-go function value

• How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path		Recursive	
node <i>t_n</i>	\leftrightarrow	state <i>n</i> at stage <i>t</i>	
$edge(t_n,(t+1)_m)$		allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of edge $(t_n, (t+1)_m)$		cost/reward of decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of shortest/longest path from node t_n to end node		cost/reward-to-go function $f_t(n)$	
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$	
shortest or longest path \leftrightarrow		recursion is min or max:	
		$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \begin{pmatrix} \operatorname{cost/reward of} \\ \operatorname{decision} x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from} x_t \end{pmatrix} \right\}$	
source node 1_n	\leftrightarrow	desired cost-to-go function value $f_1(n)$	

2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
 - $\circ~$ start with the boundary conditions in stage T
 - compute values of the cost-to-go function $f_t(n)$ in stages T 1, T 2, ..., 3, 2
 - $\circ \ \ldots$ until we reach the desired cost-to-go function value
- Stage 4 computations boundary conditions:
- Stage 3 computations:

• Stage 2 computations:

- Stage 1 computations desired cost-to-go function:
- Maximum value of theft:
- Metals to take to achieve this maximum value:

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of \$5,000. Each batch of beer costs \$2,000 to produce. Batches can be held in inventory at a cost of \$1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Formulating the DP

- Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path representation:
 - Stage *t* represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
 - Node t_n represents having *n* batches in inventory at stage t (n = 0, 1, 2, 3).

Month	Production amount	Edge		Edge length
1	0	$(1_n, 2_{n-1})$	for <i>n</i> = 1, 2, 3	1(n-1)
1	1	$(1_n, 2_n)$	for $n = 0, 1, 2, 3, 4$	5+2(1)+1(n)
1	2	$(1_n, 2_{n+1})$	for $n = 0, 1, 2$	5+2(2)+1(n+1)
1	3	$(1_n,2_{n+2})$	for $n = 0, 1$	5+2(3)+1(n+2)
2	0	$(2_n, 3_{n-2})$	for <i>n</i> = 2, 3	1(n-2)
2	1	$(2_n, 3_{n-1})$	for $n = 1, 2, 3$	5+2(1)+1(n-1)
2	2	$(2_n, 3_n)$	for $n = 0, 1, 2, 3$	5+2(2)+1(n)
2	3	$(2_n,3_{n+1})$	for $n = 0, 1, 2$	5+2(3)+1(n+1)
3	0	not possible		
3	1	$(3_n, 4_{n-3})$	for $n = 3$	5+2(1)+1(n-3)
3	2	$(3_n, 4_{n-2})$	for $n = 2, 3$	5+2(2)+1(n-2)
3	3	$(3_n, 4_{n-1})$	for <i>n</i> = 1, 2, 3	5+2(3)+1(n-1)

- Let d_t = number of batches required in month t, for t = 1, 2, 3
- Stages:
- States:
- Allowable decisions *x*_t at stage *t* and state *n*:

• Reward of decision *x*_t at stage *t* and state *n*:

- Reward-to go function $f_t(n)$ at stage *t* and state *n*:
- Boundary conditions:
- Recursion:

• Desired reward-to-go function value:

Solving the DP

- Stage 4 computations boundary conditions:
- Stage 3 computations:

• Stage 2 computations:

- Stage 1 computations desired cost-to-go function:
- Minimum total production and holding cost:
- Production amounts that achieve this minimum value: